Hypertrophic Scars and Keloids
Etiology and Management

Tina S. Alster and Elizabeth L. Tanzi
The Washington Institute of Dermatologic Laser Surgery, Washington, USA

Abstract

Keloid and hypertrophic scars have affected patients and frustrated physicians for centuries. Keloid and hypertrophic scars result from excessive collagen deposition, the cause of which remains elusive. Clinically, these scars can be disfiguring functionally, aesthetically, or both. A thorough understanding of the pathophysiology and clinical nature of the scar can help define the most appropriate treatment strategy.

Although many articles have been published on the management of hypertrophic and keloid scars, there is no universally accepted treatment protocol. Prevention of keloid and hypertrophic scars remains the best strategy; therefore, those patients with a predisposition to develop excessive scar formation should avoid nonessential surgery. Once a scar is present, there are many treatments from which to choose. Hypertrophic scars and keloids have been shown to respond to radiation, pressure therapy, cryotherapy, intralesional injections of corticosteroid, interferon and fluorouracil, topical silicone or other dressings, and pulsed-dye laser treatment. Simple surgical excision is usually followed by recurrence unless adjunct therapies are employed. Biologic agents that are directed towards the aberrant collagen proliferation that characterizes keloid and hypertrophic scars might be an important addition to the current armamentarium of modalities in the near future.
Despite increased knowledge of wound healing and collagen metabolism in recent years, hypertrophic scars and keloids remain a therapeutic challenge. Keloids have been recognized for centuries. In 1806, Alibert used the term ‘cheloide’ derived from the Greek ‘chele’ meaning crab claw to describe the lateral expansion of an excessive scar into the surrounding normal tissue. Hypertrophic and keloid scars may lead to significant morbidity as well as pruritus, pain, restriction of motion, or cosmetic disfigurement. There is no universally accepted treatment modality resulting in permanent eradication of hypertrophic or keloid scars.

1. Definition of Keloid and Hypertrophic Scars

A clinical definition has often been used to distinguish hypertrophic scars from keloids. Hypertrophic scars remain within the confines of the original wound, whereas keloids extend beyond the boundaries of the skin injury (figure 1 and figure 2).

Hypertrophic scars usually occur shortly after injury (weeks) and may regress with time as compared with keloids which may manifest months to years after the initial injury and do not show a tendency towards regression. One study demonstrated an average of 30.4 months between injury and the development of a keloid. Others utilize a temporal definition to differentiate the types of scarring, suggesting that a hypertrophic scar that is present for 12 months, with extension beyond the original site of injury, has evolved into a keloid. Hypertrophic scars may be more responsive to treatment, whereas keloids are often resistant to treatment and have a higher rate of recurrence.

2. The Nature of Keloid and Hypertrophic Scars

2.1 Etiology

Various factors including location of injury and ethnic background may predispose a patient to the development of keloid or hypertrophic scars. Several types of skin injury including surgery, piercing, burns, lacerations, abrasions, tattoo placement, vaccinations, insect bites, and any inflammatory process such as acne, varicella, or folliculitis, can induce keloids. Rarely, no antecedent injury can be identified.

Wound tension has been implicated as a factor in the development of keloid and hypertrophic scar formation. Tension may result from attempts to close a wound in which there has been loss of tissue, underlying bony structures, or mobility over a joint. Although many surgeons stress the importance of minimizing tension across a wound in a patient predisposed to keloid or hypertrophic scarring, no controlled studies have been performed to prove this hypothesis and many studies show high levels of recurrence despite meticulous surgical repair.

2.2 Epidemiology

Keloids are more common among patients with darker skin phototypes with an incidence of 4.5–16% in the Black and Hispanic populations. Although the frequency of keloid scarring in other ethnic groups is not as well defined, one study evaluated 175 patients of Chinese, Malaysian, and Indian descent and demonstrated a higher incidence of keloids among patients of Chinese descent.

Keloids occur with equal frequency in men and women. Although hypertrophic and keloid scars can develop at any age, patients between 10 and 30 years old are most often affected.

One study found the average age of patients at the time of initial
treatment was 25.8 years with a median onset of approximately 22 years of age in both men and women. In 14 large pedigrees, Marneros and colleagues described familial keloids as an autosomal dominant entity with incomplete penetrance and variable expression.

2.3 Clinical Features

Keloids vary in size from a few millimeters in diameter to several centimeters or larger and may be soft and doughy or firm and banded. Areas particularly prone to keloidal scarring include the ears, cheeks, shoulders, chest, upper arms, and upper back. Some authors feel these areas are more likely to scar due to the increased skin tension in these areas; however, others have challenged this conclusion.

In addition to the disfigurement keloid and hypertrophic scars may inflict on patients, they can be complicated by pruritus, tenderness, burning, secondary infection, ulceration, and restriction of motion. One study found pruritus and pain in 27 and 19% of patients, respectively.

2.4 Histology

Histopathologically, the differentiation between hypertrophic scars and keloids may be difficult. Normal skin contains distinct collagen bundles that run parallel to the epidermis. In hypertrophic scars, the collagen bundles are flatter, less demarcated, and are arranged in a wavy pattern although still oriented to the epithelial surface. In a keloid, collagen bundles are virtually nonexistent, and the fibers lie in loose, haphazardly oriented sheets.

Hypertrophic scars exhibit nodular structures containing fibroblastic cells and collagen. These nodules are not observed in normal dermis, other scars, or the majority of keloids evaluated. The nodules contain α-smooth muscle actin-staining myofibroblasts that may represent an important component in the pathogenesis of contraction.

3. Pathophysiology

3.1 Wound Healing

The normal sequence of wound healing is important in the understanding of the development and management of keloid and hypertrophic scars. Wound healing is arbitrarily divided into three stages: inflammatory, fibroblastic, and maturation. When skin injury is sustained, the complement cascade leads to the release of vasoactive mediators and chemotactic factors that stimulate the migration of inflammatory cells. Macrophages are involved in the release of cytokines that influence the wound environment and play a pivotal role in the transition between the inflammatory and granulation phases of healing. In the fibroblastic phase, fibroblasts migrate into the area and produce a new structural framework through the deposition of type III and I collagen. In the normal maturation phase, there is a decrease of stimulatory and angiogenic factors with resultant regression of hyperemia associated with early wound repair. Simultaneous collagen synthesis and degradation during normal scar maturation results in decreased nodularity and flattening of the scar.

3.2 Pathophysiology

The exact pathophysiologic mechanisms leading to keloid or hypertrophic scar formation is unknown. Several studies have investigated the nature of keloids and hypertrophic scars at the cellular level. Fibroblast activity, extracellular matrix components, growth factors, cytokines, immunologic and other mechanisms have been investigated to delineate the molecular basis of the excessive fibrosis resulting in the formation of a keloid or hypertrophic scar.

Fibroblasts in keloids have different properties than those seen in normal skin and hypertrophic scars. Fibroblasts from keloids scars respond abnormally to stimulation, show a greater capacity to proliferate and produce high levels of collagen (predominantly type I), elastin, fibronectin, and proteoglycan. In contrast, hypertrophic scar fibroblasts respond normally to growth factors and demonstrate only a modest increase in collagen production. Some investigators have demonstrated an abnormal balance between proliferative and apoptotic cell death in fibroblasts derived from keloids and hypertrophic scars.

Growth factors known to modulate wound healing include transforming growth factor-β (TGFβ), platelet-derived growth factor, and insulin-like growth factors (IGF). TGFβ is released by platelets at the site of skin injury and is highly chemotactic for macrophages and monocytes to begin the production of extracellular matrix proteins. Several studies have demonstrated the association of TGFβ with increased collagen or fibronectin synthesis by keloid fibroblasts. IGF-1 increases the expression of types I and III procollagen, and the IGF-1 receptor has been shown to be overexpressed in keloid fibroblasts. Aberrations in the levels of several cytokines, including interleukins 6, 13, and 15 may also have a role in keloid scar formation.

Hyaluronic acid is an extracellular matrix component that binds to fibroblast surface receptors. Hyaluronic acid is thought to induce localization of cytokines (particularly TGFβ) to the fibroblast, which can stimulate collagen synthesis. However, research studies regarding hyaluronic acid are conflicting, with some authors demonstrating an increased production of hyaluronic acid.
acid in keloidal fibroblasts as compared with normal fibroblasts and others[48] finding lower concentrations of hyaluronic acid in the dermis of the keloids studied.

Although several studies support the hypothesis that immunologic mechanisms play an important role in keloid or hypertrophic scarring, the data are not conclusive. Some authors[49,50] found a relationship with cell membrane proteins, such as HLA-DRB-16, B-14, and BW-16, whereas others have challenged these findings.[51] Some investigators[52] found elevated levels of IgA, IgG, and IgM, while others did not.[53] The pathogenic factors involved in hypertrophic and keloid scars may be associated with an altered cellular immune response in the skin.[54,55]

Other theories regarding the pathogenesis of keloid and hypertrophic scars include tissue hypoxia,[56] an alteration in the fatty acid composition of the fibroblasts,[57] high levels of nitric oxide during wound healing,[58] and a possible immune response to sebum.[59] Additional research is warranted to fully elucidate the validity of these possible etiologic factors.

4. Treatment of Keloid and Hypertrophic Scars

Prevention of keloid and hypertrophic scars is the best treatment strategy. Patients with a predisposition to develop excessive scar formation should avoid nonessential surgery, particularly in body locations at high risk for the development of keloids. Once a scar is present, there are many treatments from which to choose; however, there is no universally accepted treatment modality that results in complete and permanent hypertrophic scar or keloid amelioration.

4.1 Surgery

Surgical excision is usually followed by recurrence unless adjunct therapies are employed since the new surgical wound is subject to the same mechanical and biochemical forces of the original lesion. The recurrence rate has been reported to range from 45–100% when surgical excision is performed as monotherapy[50,60,61] (figure 3). Furthermore, keloids that have recurred after excision are more likely to recur if excised again.[7,62] Lee et al.[63] recently demonstrated a 63% improvement in 24 keloids treated with core extirpation, a novel surgical technique for the treatment of keloids. Core extirpation consists of removal of the inner fibrous core leaving the shell of the keloid attached to the normal skin to function as a flap.

4.2 Radiation

Radiation therapy is infrequently used as monotherapy. When combined with surgical excision, the recurrence rate following radiation treatment has been reported by several authors[64,65] to be between 10–20%.

4.3 Pressure Therapy

Compression therapy for keloids was initially reported in the 1960s.[66] The mechanism by which continuous pressure decreases the size and thickness of hypertrophic scars and keloids is not completely understood. It is thought that continuous pressure exerts its effect by producing tissue ischemia, decreasing tissue metabolism and increasing collagenase activity.[70-72] Other theories include pressure-induced release of metalloproteinase-9[73] or prostaglandin E2[74] that may effect scar softening by the induction of extracellular matrix remodeling.

Although pressure therapy has been shown in multiple studies to be effective, there are several disadvantages of treatment. It is necessary to wear the pressure dressing for at least 6 months for a minimum of 18 hours a day. Scars older than 6–12 months often respond poorly and it may be difficult to achieve the required amount of pressure (24–40mm Hg) in locations over a joint because of excessive skin movement.[10,75] Moreover, many pa-
Patients find the pressure dressing uncomfortable and cumbersome, limiting their compliance to the prescribed regimen.

4.4 Cryotherapy

Cryotherapy has been used as monotherapy and in combination with other techniques to treat keloid and hypertrophic scars. The mechanism by which cryotherapy exerts its therapeutic effect depends upon freezing-induced ischemic damage to the microcirculation. Freezing induces vascular damage and circulatory stasis leading to anoxia with eventual necrosis.\(^\text{[15,28]}\) Therapy typically involves treating the entire scar with two or three freeze-thaw cycles of 30 seconds each. Several authors\(^\text{[76-78]}\) have reported good responses in the majority of patients treated; however, facial keloids and scars older than 12 months show poor response to treatment. Cryotherapy may be more effective when combined with other procedures such as intralesional corticosteroids.\(^\text{[79]}\) Hypopigmentation resulting from the cold sensitivity of melanocytes is often permanent and renders cryotherapy less desirable in patients with darker skin phototypes.

4.5 Silicone Gel Sheeting and Other Dressings

Multiple studies have demonstrated significant scar softening and decreased pruritus following application of topical silicone gel sheeting or cushions for at least 12 hours daily for 2–4 months.\(^\text{[80-86]}\) Silicone sheeting has also been used to prevent hypertrophic scarring.\(^\text{[87]}\) The mechanism of action is not completely understood, but it has been suggested that hydration, not pressure or silicone, may lead to fibroblast modification.\(^\text{[88]}\) Although many of the studies previously performed using silicone dressings lacked adequate controls,\(^\text{[15]}\) the relatively benign nature of this treatment makes it a popular treatment option.

4.6 Intralesional Corticosteroids

Intralesional corticosteroids have become a cornerstone of both treatment and prophylaxis of hypertrophic scars and keloids. Studies have documented softening, flattening, and improvement of symptoms as endpoints of treatment.\(^\text{[89-91]}\) When used in combination with surgical excision, the recurrence rate falls below 50%.\(^\text{[92]}\) One study that evaluated patients 5 years following intralesional corticosteroid treatment showed an initial response of 90%; however, up to 50% of patients had keloid recurrence within 5 years.\(^\text{[93]}\) Based on an evidence-based approach to scar management, Mustoe and colleagues\(^\text{[94]}\) highlighted a primary role for silicone gel sheeting and intralesional corticosteroids in the treatment of a wide variety of abnormal scars. The most commonly used drug for intralesional corticosteroid injection is triamcinolone acetonide, which can be diluted with lidocaine to decrease the discomfort of the injection. Some investigators have used intralesional hyaluronidase or light cryotherapy immediately prior to injection to facilitate dispersal of the corticosteroid.\(^\text{[10,13]}\) The mechanism of corticosteroid action is related to suppression of collagen synthesis by decreased gene expression within the keloid or hypertrophic scar. Adverse effects of treatment include pain with injection, atrophy, telangiectasia, and, most troubling in patients with type V and VI phototypes, hypopigmentation that may last longer than a year following treatment.

4.7 Interferon

Based on the premise that interferon can decrease the production of types I and III collagen from fibroblasts, several groups have demonstrated improvement in keloid or hypertrophic scars following intralesional interferon injection.\(^\text{[95-97]}\) Although improvements of up to 50% have been reported, the efficacy of interferon for the treatment of keloids has been questioned.\(^\text{[98,99]}\)

4.8 Fluorouracil

Two studies have demonstrated improvement following the intralesional use of fluorouracil. Fitzpatrick\(^\text{[100]}\) reported improvement in the majority of 1000 patients treated with this technique; however, in several cases, the fluorouracil was used in conjunction with other modalities such as pulsed dye laser irradiation or intralesional corticosteroids. Another group\(^\text{[101]}\) reported short-term improvement in five patients whose surgical wounds were treated with fluorouracil as compared with saline. Additional prospective, well-controlled clinical studies are warranted to determine the efficacy of fluorouracil for the treatment of patients with hypertrophic scars and keloids.

4.9 Laser

Advances in laser technology and refinements in technique have made laser therapy one of the most advantageous modalities for the treatment of hypertrophic scars and keloids. In the 1980s, there was great controversy among laser surgeons regarding the benefits of keloid vaporization with various lasers (carbon dioxide, argon, and neodymium: yttrium-aluminum-garnet [Nd:YAG]). Ultimately, none of the preliminary studies with the aforementioned laser systems demonstrated an advantage over scalpel excision, with unacceptably high rates of scar recurrence and other adverse effects including pain, atrophy, and dyspigmentation.\(^\text{[28,102-108]}\) During the past decade; however, multiple studies using the flashlamp-pumped pulsed-dye laser (PDL) have demonstrated striking improvements in scar erythema, texture, height, and pliability.\(^\text{[109-118]}\) In 1993, Alster and colleagues\(^\text{[110]}\) were the first to demonstrate improvement in argon laser–induced hyper-
Fig. 4. (a) Hypertrophic burn scars after compression therapy and intralesional corticosteroids; and (b) improvement of scars seen 2 months after one 585nm pulsed dye laser (PDL) treatment.

4.10 Other Treatments

Multitudes of other modalities have been used in the treatment of hypertrophic scars and keloids; however, the studies evaluating the efficacy of these treatments are often limited by poor study design, a paucity of subjects, and short-term follow-up. Bleomycin,[120] tamoxifen,[121,122] tretinoin,[123] tacrolimus,[124] pentoxifylline, colchicine, calcium antagonists, tranilast, zinc, and vitamin E[5,10] have all been tried with varying success.

One of the most promising topical agents for the treatment of keloids is the local immunomodulator, imiquimod. By inducing interferons at the site of application, downregulation of collagen synthesis may be achieved. In a pilot study, Berman et al.[125] recently evaluated 13 keloids after surgical excision followed by imiquimod application initiated the night of surgery and continued for 8 weeks. Of the 11 keloids evaluated at the 24-week follow-up visit, there were no recurrences observed.

5. Conclusion

The management of hypertrophic scars and keloids remains a challenge. Multiple treatments have been advocated in the past with varying degrees of success. Hypertrophic scars and keloids have been shown to respond to pressure therapy, cryotherapy, intralesional corticosteroids, radiation treatment, topical silicone or other dressings, and laser treatment. Simple excision or vaporization of these proliferative scars often leads to recurrence. In the future, biologic agents directed toward the aberrant proliferative collagen metabolism of scars may add to the current armamentarium of treatment modalities.
Acknowledgements

No sources of funding were used to assist in the preparation of this manuscript. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

References

56. Kischer CW, Thies AC, Chvapil M. Perivascular myofibroblasts and microvascu-
68. Botwood N, Lewanski C, Lowdell C, et al. The risks of treating keloids with radiother-

73. Reno F, Grazianetti P, Stella M, et al. Release and activation of matrix metal-

loproteinase-9 during in vitro mechanical compression in hypertrophic scars. Arch Dermatol 2002; 138: 475-8
74. Reno F, Grazianetti P, Canna M. Effects of mechanical compression on hyper-
91. Stern JC, Lucente FE. Carbon dioxide laser excision of earlobe keloids: a prospec-
tive study and critical analysis of existing data. Am J Clin Dermatol 2003; 4 (4)

Correspondence and offprints: Dr Tina S. Alster, The Washington Institute of Dermatologic Laser Surgery, 2311 M Street NW, Suite 200, Washington, DC 20037, USA.
E-mail: talster@skinlaser.com