Successful Elimination of Traumatic Tattoos by the Q-Switched Alexandrite (755-nm) Laser

Tina S. Alster, MD

Traumatic tattoos are very difficult to eradicate because of the resultant deep penetration of foreign body particles. Previous treatments, such as surgical excision and dermabrasion, commonly resulted in incomplete removal or significant scarring or both. Three patients with traumatic tattoos were treated with the Q-switched alexandrite laser (755 nm), with complete lesional resolution observed after one to four treatments. No adverse sequelae, such as scarring or pigmented alteration, were noted in the laser-irradiated skin.


From the Division of Dermatology, Georgetown University Medical Center and the Washington Institute of Dermatologic Laser Surgery, Washington, DC.

Received Sep 23, 1994, and in revised form Jan 20, 1995. Accepted for publication Jan 20, 1995.

Address correspondence to Dr Alster, 2311 M Street, NW, Suite 504, Washington, DC 20037.

Mechanical penetration of the skin by such foreign body particles as metal, glass, dirt, sand, and carbon-containing material can lead to a traumatic tattoo [1, 2]. A combination of epithelium abrasion and impregnation of the skin by pigmented particles occurs as a result of trauma involving friction with road surfaces. Depending on the extent of injury, the foreign substances can become so deeply embedded in the skin that their removal is rendered extremely difficult.

Previous treatments, including surgical excision, dermabrasion, salabrasion, cryosurgery, and electrosurgery, were best delivered as soon as possible after the injury (before skin re-epithelialization) to obtain the most satisfactory results [2-12]. Often even these treatments were ineffective in eliminating the deeper tattoo particles and led to significant scarring. A variety of lasers have been used to treat traumatic tattoos, with the best results obtained after ruby laser treatment [13-15]. The Q-switched alexandrite laser has been shown to remove effectively tattoo pigment contained in amateur and professional tattoos [16-18]; however, its use in the treatment of nondec-orative, traumatic tattoos has not been previously evaluated.

Patient Reports

Three patients with traumatic tattoos were treated with the Q-switched alexandrite laser (Candela Laser Corp, Wayland, MA), with a 755-nm wavelength, a 100-nsec pulse duration, and a 3-mm spot size, until complete clearing of their tattoos had been achieved. The tattoos were treated with adjacent, nonoverlapping laser pulses. No anesthesia was used. Individual energy thresholds were determined by an immediate whitening response within the laser-irradiated areas.

Patient 1

A 43-year-old woman presented with linear tattoos on her left knee as a result of a fall on asphalt during childhood. After four treatments with the Q-switched alexandrite laser at 7.0 J/cm² over a period of 4 months, the tattoos were totally eliminated (Fig 1A, B).

Patient 2

A 34-year-old woman presented with a longstanding pencil point–puncture tattoo on her right palm. She received a single Q-switched alexandrite laser treatment at 7.5 J/cm², with complete clearing noted within 2 weeks (Fig 2A, B).

Patient 3

A 14-year-old boy with traumatic abrasions on his right knee from a recent skating accident on asphalt received six alexandrite laser treatments at 6- to 8-week intervals before total elimination of the tattoo particles was achieved. The average energy density used was 7.25 J/cm² (range, 6.0-8.0 J/cm²) (Fig 3A, B).
Discussion

Before the advent of laser surgery, tattoos of all types could be treated only using traditional surgical approaches. Several reports have demonstrated the huge success of a variety of Q-switched red and infrared lasers in removing decorative tattoo removal [16–25]; however, before this report, only the ruby laser had been shown to eliminate traumatic tattoos successfully.

The exact mechanism whereby a laser can remove tattoo pigment remains unknown. The majority of pigment clearance is achieved through physical, chemical, and ultrastructural events. Tattoo particles become fragmented because of rapid thermal expansion when laser irradiation produces heat within the targeted pigment granules exceeding 1,000ºC. An inflammatory response ensues, with eventual phagocytosis of the tattoo fragments [26–29].

The clinical response observed in laser-irradiated skin supports these histological events. Immediately after laser irradiation, the treated tattoo appears white as a result of water vaporization (or steam) within the skin. Lightening of the tattoo proceeds over the next several weeks during the inflammatory and phagocytic phases of repair.

Whereas professional tattoos usually require an average of 8.5 alexandrite laser treatments for total clearance [18], the traumatic tattoos in this
report cleared with significantly fewer treatments. The results obtained in the traumatic tattoos were similar to those seen after alexandrite laser irradiation of amateur tattoos, which require a mean of 4.6 treatments to effect clearance [18]. The improved response of these tattoos may be due in part to the predominant carbon composition, which is typically easier to eliminate, as well as to the reduced pigment load found in traumatic and amateur tattoos.

Of special note is that slightly higher energy densities were needed to treat the traumatic tattoos in this report compared with those used to treat decorative tattoos [16–18]. Because higher energy fluences can penetrate tissue more deeply, it is likely that increased energies will result in increased tattoo granule fragmentation. The composition of the traumatic tattoo pigment could also decrease the relative absorption at 755 nm because of the presence of sand, glass, or other particles within the traumatized skin, thereby necessitating the use of higher energy fluences to attain the desired result.

In summary, the Q-switched alexandrite laser can safely and effectively remove traumatic tattoos without scarring or pigmented alteration within a few treatment sessions. Even long-standing, re-epithelialized tattoos can be treated, thereby eliminating the need for early intervention, as is commonly advocated. Physicians should be aware of this laser treatment and offer it as a viable option to those patients who suffer from traumatic tattoos.

References

16. Fitzpatrick RE, Goldman MP, Ruiz-Esparza J. Use of the alexandrite laser (755 nm, 100 nsec) for tattoo pigment